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1 Introduction
In our ARO work, we have carried out an extensive research program for the study of robust system control
using methodologies from interpolation theory, dilation theory, and functional analysis. We have also become
interested in image processing and computer vision, and their application to visual tracking problems.

First of all, we devoted a large portion of our research effort to nonlinear systems. This has led us to
derive an iterative commutant liftini theorem which gives an explicit design procedure for nonlinear systems
and captures the H'-control problem in the nonlinear framework [38], [39], [40]. In this area, we have
defined a notion of rationality for nonlinear systems, and we have proven that the iterative commutant
lifting procedure produces rational controllers (in this nonlinear sense) if we start from rational data. The
procedure has already been applied to certain systems (connected with the National Aerospace Plane)
with input saturations (in collaboration with colleagues at the Systems Research Center of Honeywell in
Minneapolis). This framework has also led to new directions in introducing notions of causality [41] in
commutant lifting theory, and moreover has led to the possible formulation of a global nonlinear commutant
lifting theorem as a saddle-point result. We are particularly interested in the treatment (and understanding
the control limitations) of "hard" nonlinearities such as dead-zone, backlash, and saturation.

During the research period supported by DAAL-03-91-G-0019, we also developed novel interpolation
methods which are not norm-based. These have arisen out of our research into the multivariable gain margin
problem as well as the more general structured singular value. We believe that this new type of interpolation
theory should lead to several interesting directions in operator theory as well.

More precisely, our work on the multivariable gain margin problem, has led to a novel interpolation scheme

which we call spectral Nevanlinna-Pick interpolation and the more general structured interpolation
theory; see [14], [13], [15], and [17]. This involves matrix interpolation in which one bounds the spectral
radius, and not the norm of the interpolants as in ordinary Nevanlinna-Pick theory. (Ordinary Nevanlinna-
Pick is precisely the type of mathematical problem that arises in standard H*O synthesis.) We now have a
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theoretical procedure for solving this spectral interpolation problem both in its pure matricial and tangential
formulations.

Our solution involves a generalization of the commutant lifting theorem, and a new object of interest
in linear algebra and operator theory which we call the T-epectral radius. We are presently studying both
the theoretical and practical ramifications of our solution, and we would like to develop software for the
computation of the T-spectral radius. In our new research, we have been concentrating on the generalization
of these results to the structured singular value of Doyle and Safonov in order to try to develop an analytic
p-synthesis procedure [15]. Closely related to this work is a novel lifting technique which allows us to
study the robust stability analysis of systems under various kinds of structured perturbations which we will
consider below. (See also [9], 110], and 165].) This lifting technique allows one to interpret the upper bound
for the structured singular value p defined in terms of certain scalings as a structured singular value on a
larger space. Moreover, we will discuss below a new approach for the approximation of Riemann mappings
(conformal equivalences from simply connected sub-domains of the complex plane to the unit disc) for the
application of solving the gain-phase margin problem [48].

We have continued our research on the utilization operator theoretic methods in HW-optimization theory
using skew Toeplita operators (see [12] for the precise definition), which seem ideally suited for studying HOO
design problems, especially for distributed (i.e., infinite dimensional) systems. These methods are quite
natural in the control context since they allow one to do design just using the input/output operators.
This has led to an explicit solution of the four block problem for large class of multivariable distributed
systems. (This is the most general HOO-optimisation problem.) The procedure seems to be numerically
robust as evidenced by its implementation at the Systems Research Center of Honeywell, and its application
to a number of distributed plant models including a flexible beam (52], and an unstable delay system
associated with the flight control of the X-29 [26]. A nice feature of this approach is that the complexity
of the computations only depends on the the weighting matrices (modelling the disturbances) and not on
the plant (which may be distributed). Since the weighting matrices are typically taken to be rational, this
approach seems very efficient even in the finite dimensional case for plants with large state spaces. We have
also been developing methods for the utilization of an operator due to N. Young in order to simplify some
of our computations in the standard problem for multivariable systems.

Next using the one-step dilation procedure, we have given a way of parametrizing the suboptimal con-
trollers for such generalized interpolation problems [34]. This has led to a scheme for designing suboptimal
finite dimensional controllers for distributed systems in the one block setting [57]. We would like to con-
tinue this direction for the general standard problem as well as apply the techniques to a number of design
problems. Some steps in this direction have already been taken in [26] and [52].

Closely related to the above work has been the use of H' techniques to study sampled-data control.
See [7] and the references therein. Here one can use a certain operator-theoretic lifting method to describe
a complete solution to the analysis problem of verifying that a given controller constrains the L 2-induced
norm of the sampled-data system to be less than some pre-specified level. (In fact, the lifting method is
applicable to all norm based optimization problems. In discrete-time such a technique was employed in [46]
to study a number of issues in robust control.)

We will also discuss below our research in combined HOO-H 2 suboptimal controllers ([27] and [29]) as
well as sketch an approach for combining other norms based on techniques from interpolation on Banach
apaces, and the connection of this methodology to a new approach for model reduction which we intend to
explore in our new ARO contract.

In a different direction, we have been using curve evolution theory (and especially invariant nonlinear
diffusion equations), for the development of new algorithms in image processing and computer vision. Curve
evolution theory has recently become a major topic of research, and indeed has appeared in such diverse
fields as differential geometry, parabolic equations theory, numerical analysis, computer vision, the viscosity
solutions of Hamilton-Jacobi equations, and image processing. See [49, 50, 51, 60, 61, 62, 63, 64] and the
references therein.

In particular, evolution equations which are geometric non-linear versions of the classical heat equation
have received much attention, since these equations have both theoretical and practical importance. These
ideas have been used also in shape-from-shading, image smoothing and enhancement, motion planning, shape
segmentation, optical flow, and a continuous implementation of mathematical morphology.
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A complete list of publications which acknowledges support of DAAL-03-91-G-0019 is included in Sec-
tion 7. We now sketch the work done by A. Tannenbaum and collaborators on this contract.

2 Nonlinear Robust Control

We have been pursuing several directions in order to derive nonlinear generalizations of the (linear) H'
theory in the weighted sensitivity minimization (one block), mixed sensitivity (two block), and even standard
problem frameworks. One such direction is based on an iterative commutant lifting theorem [38], [39],
[40], [32] which gives an explicit design procedure for nonlinear systems and captures the HOO-control problem
for a large class of nonlinear plants.

2.1 Causal Analytic Mappings

We consider analytic mappings on Hilbert space. For the precise definitions see [38], [39], [40], [30]. For
simplicity, we will only consider SISO operators in what follows. The multivariable case works the same way
[30]. We will find it convenient to employ the Fourier representation of elements of H 2(D").

So we consider an analytic map # with 9 = W H2 (the standard Hardy space on the disc D). Note
that

H2 ®.. H2 =(H 2 )O" _ H2 (D")

where we map 1 ®... ®zO ... ® 1 (z in the i-th place) to zj, i = 1,..., n. In the usual way, we say that 0
skiff-inva.iant (or time-invariant) if

4"Son=S~bn VnŽ>1,

where S : H2 --- H2 denotes the canonical unilateral right shift. (Equivalently, this means that 54 = 40o S
on some open ball about the origin in which 4 is defined.)

Now set
PU= 0®- . PU) (n times), j 1, n>1,

where
P(j) := I - S5S1J.

Then we say that 4 is causal if

PUj)#" = P(j)#"P,( ), j > 1, n >1 .

For 0: H 2 -. H 2 linear and time-invariant, it is easy to see that # is causal. In the nonlinear setting
however, time-invariance may not imply causality [40]. It is for this reason, that a causality constraint must
be explicitly included for nonlinear H0* design.

2.2 Causal Optimization Problem

Because of the difficulties involving causality when one applies the classical commutant lifting theorem in
the nonlinear framework, we will need to formulate a new linear causal optimization problem. Then
we will indicate how to reduce the nonlinear generalization of the H' sensitivity minimization problem to
a series of such problems.

We let S(,) denote the unilateral shift on H2 (Dn) given by multiplication by (z, ... z.). Since H2 (D/)
will be fixed in the discussion we will let S := S(.). In what follows, U will denote the unilateral shift on
H2 given by multiplication by x, and e e H' will be an inner function. Finally W : H2 (D") --o H2 will
denote a causal, time-invariant bounded linear operator.

We can now state the causal H°-optimization problem (COP): Find

:= inf{IIW - eQll: Q: H'(Dn) -. H 2 , Q causal, time-invariant}. (1)

Moreover, we want to compute an optimal, causal, time-invariant Q.,t such that

=1W - eq,,,ll. (2)

3



C u P ,

Figure 1: Sensitivity Minimization Configuration

If we drop the causality constraint, the solution to problem (1) is provided by the classical commutant
lifting theorem. With the causality constraint, the solution to (COP) is abstractly provided by a causal
commutant lifting theorem [41], [33], [31].

Our constructions are based on a reduction theorem [30], which allows us to reduce the causal H'°-
optimization problem to one of classical interpolation. Then in analogy with our previous work, we can base
an causal iterative design procedure on this chain of ideas.

Here is how such a procedure would look. Let us call an analytic input/output operator H : 2 -. H 2

admiabLe if is is causal, time-invariant, and 0(0) = 0. Denote the set of admissible operators by C.. In
what follows below, we assume P, W E C., and that W admits an admissible inverse.

Referring to Figure 1, we consider the problem of finding

p, :-nf sup it[(/+ P o C)-' o WIVII, (3)
II,,ll~5

where we take the infimum over all stabilizing controllers. (In what follows, we let ii denote the 2-norm
11112 on H2 as well as the associated operator norm. The context will make the meaning clear.) Thus we are
looking at a worst case disturbance attenuation problem where the energy of the signals v is required to be
bounded by some pre-specified level 6. (In the linear case of course since everything scales, we can always
without los of generality take 6 = 1. For nonlinear systems, we must specify the energy bound a priori.)
Then one sees that (3) is equivalent to the problem of finding the problem of finding

is -= inf sup II(W - P o q)"ll. (4)

The iterated causal commutant lifting procedure gives an approach for approximating a solution to such

a problem. Briefly, the idea is that we write

W = WI+W2+..,

P = PI+P 2 +',

q = qi+q 2 +'",

where Wj, P,, qi are homogeneous polynomials of degreej. Notice that

is$ = 6 inf IJw• - Pjqjlj + 0(62), (5)
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where the latter norm is the operator norm (i.e., H' norm). From the classical commutant lifting theorem

we can find an optimal (linear, causal, time-invariant) ql,.pt E H' such that

As = 611W 1 - Piqi..,ltI + O(W2). (6)

Now the iterative procedure gives a way of finding higher order corrections to this linearisation. Let us
illustrate this now with the second order correction. Indeed, having fixed the linear part ql,.pt of q in (4),
we note that

W(,) - P(q(u)) - (W1 - P=qi,.,,)(v)

W2(u) - P2(qi,.,t(v)) - Piq2(V) + higher order terms.

Regarding W2, P2 , q2 as linear operators on H 2 ® H2 - H2 (D 2, C) as above, we see that

sup II(W - P o q)(,) - (Wi - Pjqi,,,t)till _ 6211W2 - PiqaII + 0(63),
IIwllE

where the "weight" W2 is given by

",*2 := W2 - P2(ql,., , ®qi,.p,)-

The point of the iterative causal commutant lifting procedure is to allow us to construct an optimal admissible
q3,,,t, and so on.

In short, instead of simply designing a linear compensator for a linearization of the given nonlinear system,
this methodology allows one to explicitly take into account the higher order terms of the nonlinear plant, and
therefore increase the ball of operation for the nonlinear controller. Moreover, if the linear part of the plant
is rational, our iterative procedure may be reduced to a series of finite dimensional matrix computations.
(See [30, 38] for discussions of rationality in the nonlinear framework.)

Finally, in a number of interesting cases, the above methodology can be extended to a nonlinear extension
of the mixed sensitivity problem; see [25]. In fact, one can show that for linear weighting filters and
admissible plant, the nonlinear mixed sensitivity problem may be reduced to a standard linear two block
problem, followed by a one block nonlinear design, which may be solved using the above iterative methods.

Recently the above procedure was extended to the general standard problem for nonlinear systems; see
(32]. We should note that we have concentrated on time-invariant systems in our above description. In fact,
there is a much more general causal commutant lifting methodology [41, 33, 31] that can be extended in
principle to time-varying systems. This is a very important problem area. Moreover, there are interesting
problems concerning the equality of certain invariants which arise the the general causal commutant lifting
framework [41] which we intend to consider in our upcoming ARO contract.

2.3 Saddle-Point Approach to Nonlinear Optimization

We have discussed above an iterative commutant lifting approach to nonlinear system design. The iterative
communtant lifting technique is basically a local analytic method for nonlinear system synthesis. We have
also been exploring a very different global approach based on an interpretation of the classical commutant
lifting theorem as a saddle-point result [42]. This motivates us to formulate a nonlinear commutant lifting
result in such a saddle-point, game-theoretic framework. A related approach to nonlinear design has already
been independently employed in the novel and important papers of Ball-Helton [4], [5].

In our research, instead of considering general nonlinear systems we limit ourselves to the concrete (but
certainly interesting case) of linear systems with input saturations. Such systems occur, of course, all the
time in 'nature." We should add that a similar approach should be valid for many of the hard, memoryless,
noninvertible nonlinearities which appear in control.

Mathematically, the case of the saturation is very interesting since in a certain sense it is a nonlinear
analogue of an inner (non-minimum phase) element, whose "spectrum" seems to be spread throughout
the unit circle. Thus the problem of sensitivity minimisation for such elements (that is, a form of weighted
inversion) is particularly challenging, and will be a key topic to be studied in our upcoming research program.
What needs to be developed for this global approach to nonlinear H0 ' is a commutant lifting type result
valid on convex spaces. We are doing this in our new ARO contract.
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3 Structured Singular Values and 1L-Synthesis

We would like now to discuss our work on the structured singular value and i-synthesis using a novel
approach which we developed called structured interolation theory. The structured singular value was
introduced into robust control by John Doyle and Michael Safonov ([22], [59]) to handle problems involving
structured perturbations which includes both H0 and the multivariable gain margin as special cases.

Our starting point is the fact that the problem of internal stabilisation of a given LTI multivariable plant
can be reduced to one of interpolation. Thus the natural measure of robust performance in this framework
is given by the minimization of the structured singular values over all possible interpolants. Hence, one
needs a structured Nevanlinna-Pick type result which will generalize both the classical Nevanlinna-Pick
theorem (relative to the H'-norm), as well as the spectral Nevanlinna-Pick theorem (relative to the spectral
radius). Such a structured Nevanlinna-Pick theorem can be deduced as a consequence of a general structured
commutant lifting theorem as we will indicate below. This approach has been developed in our ARO
sponsored work 113, 14, 11, 17, 8].

We will discuss some of these issues now, and explain how these results can serve as a basis of performing
the A-synthesis procedure in robust feedback control in a rigorous, analytical manner.

3.1 Structured Singular Values and Dilations

We would like to formally introduce the structured singular value now, and give some of its basic properties.
We base this discussion on [15]. Instead of working over diagonal sets of matrices as in [22], we can more
generally work over an arbitrary finite dimensional C*-algebra.

Let C be a complex finite-dimensional Hilbert space, and A C C(C) (the space of bounded linear operators
on 0), a C*-algebra. For A E C(C), A A 0, we define the structured singular value

il,(A) := [inf{IlX11 : X E A, -1 E o(AX)}]- 1 .

Moreover, we set
1,&(A) := inf{IIXAX-' 1I: X E A'},

where A' is the commutator of A. Note that for A = C(C), pA(A) = 11Ail, while for A = CIC, AA(A) = h1Ailo,
(the spectral radius of A).

For certain diagonal algebras of matrices, it is argued in [22] and [59] that the structured singular value
A& is the natural object of study in robust control. Unfortunately the structured singular value is difficult

to compute, so in practice it is !, which is actually used for control problems. It is therefore of interest to
know when these two objects are equal.

In [22], Doyle has shown that in fact pA = 1& when the relevant diagonal algebra has three or fewer
blocks. In [15], we give a very different proof of this fact based on the following result which we believe has
independent interest. Define the operator MA E C(C) by MA := AX. Notice that £(C) may be given a
Hilbert space structure with respect to

(TI, T2) := Tr(T;T 1),

where Tr denotes the trace. Define
S((A) MA)

where
A= {Mx : X E A'}'.

We now have (see [15] for the proof):

Theorem 1
pA(A) := 5A(A).



Note that Theorem 1 implies that lA can be regarded as a structured singular value on a big-
ger space. From the theorem and property (Ui) above, we can immediately infer the key fact that A, is
continuous. This result is also strongly connected to some recent work on robust stability with respect
to time-varying perturbations [65]. In fact, we are investigating the extension of this lifting technique to
operators on infinite dimensional Hilbert spaces with applications to the robust stability analysis of systems
under various kinds of structured perturbations [9]. In particular, we have considered the following two cases
(9, 10]:

(i) The algebra of constant diagonal scales A', with the operator A taken to be analytic Toeplits. (This
is the case analysed in [65].) Note that by *analytic Toeplits operator* A, we mean that A is given
by an n x n matrix with entries HOO functions, which we regard as acting as a multiplication operator
on H 2 (CR). Thus A defines a stable LTI system. We also want to consider general time-varying linear
input-output operators with this constant diagonal algebra of scalings as well.

(ii) Again we take A to be analytic Toeplits, but now we want to consider A' to be the algebra of diagonal
analytic Toeplits operators. This is the type of problem considered in ,-synthesis.

We should note that this work has also led to a new relative Toeplitz-Handorff theorem.
We will now outline a structured analogue of the commutant lifting theorem [15]. This will be applied

to the structured version of classical matricial Nevanlinna-Pick interpolation below.
Set T := S(m) ® It where m is a finite Blaschke product, S(m) is the compressed shift, and e is a finite

dimensional complex Hilbert space. Fix A C £(C), a C*-algebra. Define

Ij.2 0 A:= {IH®x :X E }A), H2A' := {H2 ®X X E A'}.

Notice that ?X:= H 2(f) e mH2 (t) reduces both Ima ® A and I4g ® A'. Now define for A E {T}' (the
commutant of T),

pf(A) := inf{IIXAX-'1 l : X invertible, X E {T}', X E (Isf ® 0AIe)').

Let U be the isometric dilation of T on H 2 (C) (so that U is defined by multiplication by z). For B E {U}',
define

pg(B) := inff IIYBY- 1 11: Y invertible, Y E {U}', Y E (IM2 ® A)').

We can now state the following result from [15]:

Theorem 2 (Structured Commutant Lifting Theorem) Notation as above. T7hen for A E {T}',

p4 (A) = inffp (B): B i a commuting dilation of A).

Actually, in the finite dimensional case of interest to us, we can show that

p!()= inf sup ;!A(B(z))
B =ED

where B E {U}" is a commuting rational dilation of A. This leads to structured versions of the classical
Nevanlinna-Pick theory both in its matricial and tangential forms [15, 11, 8]. The tangential form is precisely
what is needed in making the ;-synthesis procedure rigorous.
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3.2 Conformal Mappings

We would like to briefly discuss some work that we also did on the gain-phase margin problem that involves
some novel approximation methods of Riemann mappings (conformal equivalences from a simply connected
proper subset of C to the unit disc) due to Marshall-Morrow (see [20] and the references therein).

The successful solution of the gain and phase margin problems (see (67], [48], [23]) was based on the fact
that one could explicitly construct a conformal equivalence from a simply connected subdomain of C (which
was associated to the uncertainty model) to the disc. Nevanlinna-Pick interpolation then took care of the
rest. In (46], we considered a combination of both the classical gain and phase margins in order to arrive at a
better measure of robust stability which we called the gain-phase margin. Unfortunately, in this case, there is
no explicitly computable conformal equivalence between the associated domain of uncertainty and the disc.
The algorithm of Marshall-Morrow however gives a fast way of approximating the given equivalence, and
has led to a reliable approximate solution of gain-phase margin in [20]. We are now applying this algorithm
to the type of general robust synthesis question as considered by Sideris and Safonov in (66].

4 HI Optimization of Distributed Systems
In [53], (54] we have considered the mixed sensitivity H°O-optimisation problem for distributed plants with
a finite number of unstable poles.

As in the standard operator approach to such problems, the computation of the optimal performance
and corresponding optimal controller is reduced to a finite dimensional matrix problem. In the stable case,
the size of the matrix only depends on the McMillan degree of the weighting filters. In the case of unstable
plants, the size of the corresponding matrix depends on the number of right half plane poles of the plant
as well. The dimension of this matrix can be computed a priori. The key mathematical fact that we use is
that the skew Toeplits operators which we obtain in the unstable case are finite rank perturbations of the
classical skew Toeplits operators obtained from compressions of rational functions.

In our ARO research, we have used these techniques to synthesize controllers for several types of flexible
structures [52], and an unstable delay system derived from the flight control of the X-29 [26].

4.1 Two Block Problems With Unstable Plant

In this section, we will show that several two block H00-minimisation problems reduce to the computation
of the norm of a certain skew Toeplits operator, and indicate how this norm may be computed. We begin
with some notation. The Hardy spaces H2 and H' are defined on the unit disc as above. We denote

RH° := {rational functions in H J}.

We consider the feedback configuration of Figure 2 with

Gd

and G, E HOO, Gd E RHO*.

We assume that (i) G,, = v4G,., where n,, E H- is inner (arbitrary) and G., E H' is outer, and (ii)
Gn, Gd have no common zeros in the closed unit disc. We also write Gd = mjGdo where md E RH' is
inner and Gd. E RH°° is outer. Under these assumptions there exist X E RHo and Y E H' such that

XG,, + YG, = 1. (7)

The set of all controllers which stabilize the plant can now be written in the form

C X+QGd
Y- QG,,

for some Q E HI. Now let S := (1 + PC)-' and note that

S = I -XG, - QGGd. (8)

8



Figure 2: Standard Feedback Configuration

In (53], [54], we show that the computation of

*f =I [n Wis il
.tabivii. gClL Wj(S -1) III

where W1, W2 E RHI are given weighting functions with W- 1 , W-"1 E RH' may be reduced to computing
the norm of the operator

A: PH(..) (wo(s) - l*O(S)m(S)) 1(9)[ Go(s)II
where S : H 2 --4 H 2 denotes the unilateral shift, H(m4) :=H 2 em H 2 and P(m,,,.) the orthogonal projection
onto H(m,), for m, n4 inner functions associated to the plant and weighting filters, and where Wo, *i'0, Go
are rational HOO functions computed from the plant and weighting filters. This reduction is true for plants
with arbitrary outer parts.

In [53], [54], we develop an approach to computing the singular values and vectors of operators of the
form (9). We remark here that it is easy to compute the essential norm (see [53], [54]) of the operator A,
which will be denoted by IhAIl.. Then in [54], the following result is proven:

Theorem 3 Let n denote the mazimum of the McMillan degrees of the weighting filters W1 and W2, and
let I denote the number of unstable poles of the plant P. Then the singular vectors and values of A which
are > ItAll, may be derived from an explicitly computable system of 3n + 21 linear equations (the "singular
system").

In [54], the singular system of equations is explicitly written down. Again the number of equations
only depends on the McMillan degrees of the weighting filters, and the number of right half plane poles of
the plant. The computation of the maximal singular value and the associated singular vectors of A, then
allows us to find the optimal performance & of our original control problem and the corresponding optimal
compensator.

4.2 Mixed Norm Suboptimal Controllers
One of the main themes in modern control theory is the utilization of norm based criteria to measure the
optimal performance of a given control system. (See [23] for detailed discussions on this topic.) Two of the
most important norms employed in modem control analysis and design are the H2 -norm and the H'-norm.
Indeed, the H 2 -norm is the basis of classical quadratic optimal control, while the H'-norm appears in
modern robust synthesis (and implicitly in the more classical loop shaping methods [23]).

We have been investigating combining the advantages of both H 2 and H*O control in [29]. (See also [27]
for extensive lists of references on various approaches to mixed norm control.) Our starting point is a nice
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result of Kaftal-Larson-Weiss [45] which guarantees the existence of an interpolant which simultaneously
satisfies an H' and H2 suboptimality criterion. Using the theory described in [34] on suboptimal H'
interpolants, we can then give an explicit way of computing the combined H°-H 2 suboptimal interpolant
in a given Hco problem.

More precisely, for c E L', set do(c) := distance(c, H°°), and d2(c) := distance(c, H 2 ). (Note that all of
our Hardy spaces are defined on the unit disc here.) Then for any 6 > 1, it is proven in [45] that there exists
0 E HI such that

1C - II. <_ 6d. (c), llc - 0112 5 6d2(c) (10)

In case, "t, to E H' with m inner, and wo = p/q rational, using skew Toeplits theory [29] one may
explicitly construct *,, i.e., if c Mw, then we can find 0 E H' satisfying

6d2 (c) (1
1 - 4,l- _< 6d4(c), l!WW- 0112 <b . (I

Indeed, let p:= 6d..(c), and let A,, p2q(T)*q(T) - p(T)p(T) be a skew Toeplits operator. Let go denote
the function in H' defined by

go := 62d 0 (c)s2i;lq(T)Y(1 - mr--0). (12)

Then the function

Wo - n4b = Bi = •p(T)g6  (13)

B mt(O) + q(T)g(

satisfies (11).
The skew Toeplits approach is the only procedure of which we are aware to compute a 40 satisfying (11)

when m is irrational. Further, let n := max{degree p, degree q}. Then, if m is Blaschke product of order h
where n is small and k is large, the methodology just outlined provides a numerically efficient method for
computing the function 0 satisfying the Kaftal-Larson-Weiss constraints (11). However, if this is not the
case and m is rational, then the state space methods in [27] to compute a 0 satisfying (11) may be more
efficient.

Since as it turns out that the combined H°"-H2 interpolant is a central solution, these interpolants are
well-known to be numerically robust, and leads to an interesting class of combined H°-H2 controllers for
feedback systems. We are now actively investigating the properties of these controllers, as well as extending
these results to find a computational procedure for the full standard problem setting for distributed MIMO
systems.

Further, we have found a new method for constructing the central solutions as related to the general H'
standard problem in the multivariable case. We are now in the process of exploiting this technique for the
explicit parametrization of the suboptimal controllers for multivariable distributed systems. This would give
a powerful alternative method to the one-step extension techniques we have been previously using.

Finally, we are interested in combining other types of norms in control, for example, L1 and H'. A
possible method for doing this can be based on some new results on interpolation in Banach spaces due
to Pisier [58]. In fact, this methodology can also have some nice applications to model reduction (relative to
"best" Hankel norm approximations), which is certainly a direction which we intend to explore.

5 Image Processing and Computer Vision

We have been doing extensive research into image processing and computer vision, and the use of these
methodologies in visual tracking. We are very interested in understanding how to use visual information in a
feedback loop. In order to give the reader a flavor of this work, we will concentrate on a new multiresolution
representation theory that we developed for planar shapes [60, 61]. In this work, we combine the three
important theories of scale-spaces, affine invariant descriptors, and curve evolution, in order to define a
new affine invariant scale-space for plane curves. This scale-space is obtained from the solution of a novel
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curve flow, which admits affne invariant solutions. Our other work in vision covers a new theory of shape
[49, 50, 51], as well as new methods for affine invariant image processing and analysis (62, 63, 64].

Multi-scale descriptions of signals have been studied for several years already. A possible formalism for
this topic comes from the idea of multi-scale filtering which was introduced by Witkin [68], and developed in
several different frameworks by a number of researchers in the past decade. The idea of scale-space filtering
is very simple and can be formulated as follows: Given an initial signal to(X) : R" --* R m , the scale-space
is obtained bly filtering it with a kernel KX(2, t) : Rn --+ R , where t E R+ represents the scale. In other

words, the scale-space is given by *(A, t) defined as

*(I?, t) := fapo)[00()], (14)

where nX(.,t)[-] represents the action of the filter X(., t). Larger values of t correspond to images at coarser
resolutions.

It is important to note that not every kernel can be used in defining a scale-space. Indeed, several
conditions need to be imposed on the signal %.(X, t) (and therefore on the filtering operation (14)). One of
the most important is that of causality, which states that no "information" is created when moving from
fine to coarse scales.

A famous example of a kernel which satisfies the required conditions is the Gaussian kernel. In this case,
the scale-space is linear, and the filter in (14) is just defined by convolution. The Gaussian kernel is one of
the most studied in the theory of scale-spaces. It has some very interesting properties, one of them being
that the signal V obtained from it, is the solution of the heat equation (with i0 as initial condition) given
by

at

(For more details about the Gaussian scale-space, see the aforementioned references.)
One of the key facts that can be gleaned from the Gaussian example, is that the scale-space can be

obtained as the solution of a partial differential equation called an evolution equation. This idea was developed
in different works for evolution equations different from the classical heat equation. In what follows, we will
describe scale-spaces for planar curves which are obtained as solutions of nonlinear evolution equations.

The second fundamental concept which we would like to emphasise is that of invariant descriptor. An
invariant descriptor is a property of an object, which does not change when the object undergoes certain
transformations. More precisely, a quantity Q is called an invariant of a Lie group C if whenever Q transforms
into 1Q by any transformation g E C, we obtain 4 = OQ, where e is a function of g alone. If e = 1 for
all g E C, Q is called an absolute invariant. We should add that the development of invariants of viewing
transformations (Euclidean, similarity, affine, and projective maps) has received extended attention from the
computer vision community in the last years. The topic is very important in areas such as object recognition.
A special clas of invariants is given by the differential invariants which are based only on local information,
and are useful for the representation and recognition of objects under partial occlusions. An example of
this kind of invariant is the Euclidean curvature. In our work, we have been especially interested in affine
differential invariants.

The third component of our work comes from the theory of plane curve evolution. Here the curve regarded
as the boundary of a planar domain, deforms in time. This deformation is governed by a partial, usually
nonlinear, evolution equation. Different evolution equations can model different physical phenomena, such
as crystal growth, the Huygens principle, and curve shortening processes. The theory has been well studied
in areas such as computational physics, differential geometry, numerical analysis, and parabolic equations.
We have introduced these ideas into computer vision in (49, 50, 51].

Motivated by the importance of affine transformations in computer vision, a new theory of affine curve
evolution was recently developed [60, 61, 62, 63]. This theory, based on affine differential geometry and the
theory of parabolic evolution equations, constitutes the basis of the work on multi-scale representations of
signals and image processing in general. This is based in turn on a new nonlinear evolution diffusion equation
which admits affine invariant solutions. The solution of this evolution equation determines an affine invariant
scale-space for planar curves. Efficient computer implementation of this theory is possible due to a recently
developed numerical algorithm for curve and surface evolution. In our continuing ARO research, we will be
employing these algorithms to a number of problems in active vision, and visual control.
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